1 Commits

4 changed files with 330 additions and 274 deletions

View File

@@ -1,4 +1,4 @@
# Localization file for video2geoframes.py script
# Localization file for video2geoframes.py
# English (US / World)
#
# Last edition : 2024-06-23

View File

@@ -1,4 +1,4 @@
# Localization file for video2geoframes.py script
# Localization file for video2geoframes.py
# French (France)
#
# Last edition : 2024-06-23

View File

@@ -8,7 +8,7 @@ Designed for contribution to street-level imagery projects like Mapillary or Pan
__author__ = "Lucas MATHIEU (@campanu)"
__license__ = "AGPL-3.0-or-later"
__version__ = "2.0-alpha7"
__version__ = "2.0-alpha8"
__maintainer__ = "Lucas MATHIEU (@campanu)"
__email__ = "campanu@luc-geo.fr"
@@ -19,9 +19,9 @@ from datetime import datetime, timedelta
import cv2
import piexif
from tomlkit import dumps, loads
from tomlkit import loads
from tqdm import tqdm
from exif import Image, GpsAltitudeRef
# Functions
def unix_path(path):
@@ -45,19 +45,56 @@ def byte_multiple(size):
size = size / 1024
multiple = multiples[i]
return size, multiple
def existing_items(expected_items: list, items: list):
presents_items = []
duplicated_items = []
missing_items = []
for eit in expected_items:
i = 0
for it in items:
if it == eit:
i += 1
if i == 0:
missing_items.append(eit)
elif i == 1:
presents_items.append(eit)
else:
duplicated_items.append(eit)
return {'presents': presents_items, 'duplicated': duplicated_items, 'missing': missing_items}
def list_enumerator(item_list: list, intermediate_separator: str, last_separator: str):
i = 1
for it in item_list:
if i == 1:
enumerated_list = it
elif 1 < i < len(item_list):
enumerated_list = '{}{}{}'.format(enumerated_list, intermediate_separator, it)
else:
enumerated_list = '{}{}{}'.format(enumerated_list, last_separator, it)
i += 1
return enumerated_list
# Start
print('# video2geoframes.py ({})'.format(__version__))
print("# video2geoframes.py (v{})\n".format(__version__))
# Configuration settings
base_path = unix_path(os.path.dirname(__file__))
ini_file_path = '{}/video2geoframes.ini'.format(base_path)
ini_file_err = False
conf_file_path = '{}/video2geoframes_conf.toml'.format(base_path)
conf_file_err = False
## Default values
# Default values
mandatory_parameters = ['locale', 'exiftool_path']
locale = 'en_us'
min_frame_samp = 0.5
max_frame_samp = 60.0
@@ -68,323 +105,323 @@ max_frame_height = 9000
min_time_offset = -10.0
max_time_offset = 10.0
## Platform-dependent commands
# Platform-dependent default paths
if platform.system() == 'Windows':
ffmpeg_path = '{}/dependencies/ffmpeg-essentials/bin/ffmpeg.exe'.format(base_path)
exiftool_path = '{}/dependencies/exiftool.exe'.format(base_path)
else:
ffmpeg_path = 'ffmpeg'
exiftool_path = 'exiftool'
## ini file reading
if os.path.exists(ini_file_path):
configuration = {}
try:
# Configuration file reading
try:
with open(ini_file_path, 'r') as file:
for line in file:
if line[0] == '#':
continue
else:
(key, value) = line.split()
configuration[key] = value.replace('"', '')
if os.path.exists(conf_file_path):
with codecs.open(conf_file_path, mode='r', encoding='utf-8') as f:
conf_toml = loads(f.read())
f.close()
else:
raise FileNotFoundError
locale = configuration.get('ui_language')
max_frame_samp = float(configuration.get('max_frame_sample'))
ffmpeg_path = configuration.get('ffmpeg_path').replace('./', '{}/'.format(base_path))
exiftool_path = configuration.get('exiftool_path').replace('./', '{}/'.format(base_path))
except:
print('\nError... not readable or incomplete ini file. Default configuration will be used.')
# Configuration check
reading_parameters = conf_toml['system'].keys()
check_result = existing_items(mandatory_parameters, reading_parameters)
# Localization
locale_file_path = '{}/locales/{}.toml'.format(base_path, locale)
if len(check_result['missing']) != 0:
missing_parameters_list = list_enumerator(check_result['missing'], ', ', ' and ')
if os.path.exists(locale_file_path):
if len(missing_parameters_list) > 1:
verb = 'is'
else:
verb = 'are'
print("(!) {} {} missing in configuration file.".format(missing_parameters_list, verb))
raise ValueError
# Configuration assignment
locale = conf_toml['system']['locale']
exiftool_path = unix_path(conf_toml['system']['exiftool_path'])
except (FileNotFoundError, ValueError):
print("\nError... configuration file doesn't exists or invalid.")
default_conf = str(input("Use default configuration instead (Y/N) ? ").upper())
if default_conf != 'Y':
raise InterruptedError
# Localization
locale_file_path = '{}/locales/{}.toml'.format(base_path, locale)
if os.path.exists(locale_file_path):
with codecs.open(locale_file_path, mode='r', encoding='utf-8') as f:
locale_toml = loads(f.read())
f.close()
else:
print("Error.... file for locale \"{}\" doesn't exists or invalid.".format(locale))
ValueError
user_agree = locale_toml['user']['agree'][0].upper()
user_disagree = locale_toml['user']['disagree'][0].upper()
path_error = locale_toml['ui']['paths']['path_err']
# Introduction text
print(locale_toml['ui']['info']['intro'])
# User input
## TOML setting file
toml_setting = input('\n{}'.format(locale_toml['ui']['parameters']['toml_setting'].format(user_agree, user_disagree)))
i = 0
if toml_setting.upper() == 'O':
while True:
try:
i += 1
toml_file_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['toml_file']))).strip()
if os.path.exists(toml_file_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
with codecs.open(toml_file_path, mode='r', encoding='utf-8') as f:
setting_toml = loads(f.read())
f.close()
# <--coding in progress-->
video_path = ''
gps_track_path = ''
## Paths
else:
print('\n{}'.format(locale_toml['ui']['info']['paths_title']))
### Video file
while True:
try:
video_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['video_file']))).strip()
if os.path.exists(video_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
### Video metadatas extraction
video = cv2.VideoCapture(video_path)
video_fps = video.get(cv2.CAP_PROP_FPS)
video_width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
video_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
video_total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
### GPS track file
while True:
try:
gps_track_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['gps_track']))).strip()
if os.path.exists(gps_track_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
### Output folder
output_folder = unix_path(input(locale_toml['ui']['paths']['output_folder']))
## Parameters
print('\n{}'.format(locale_toml['ui']['info']['parameters_title']))
### Timelapse video
timelapse = input(locale_toml['ui']['parameters']['timelapse'].format(user_agree, user_disagree))
if timelapse.upper() == user_agree:
### Timelapse framerate parameter
while True:
try:
timelapse_fps = int(input(locale_toml['ui']['parameters']['timelapse_fps'].format(min_timelapse_fps,
max_timelapse_fps)))
if max_timelapse_fps >= timelapse_fps >= min_timelapse_fps:
frame_sampling = 1 / timelapse_fps
break
else:
print(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps,
max_timelapse_fps))
True
except ValueError:
print(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps, max_timelapse_fps))
True
else:
### Frame sampling parameter
print("\nError.... file for locale \"{}\" doesn't exists or invalid.".format(locale))
raise InterruptedError
user_agree = locale_toml['user']['agree'][0].upper()
user_disagree = locale_toml['user']['disagree'][0].upper()
path_error = locale_toml['ui']['paths']['path_err']
# Introduction text
print(locale_toml['ui']['info']['intro'])
# User input
# TOML setting file
toml_setting = input('\n{}'.format(locale_toml['ui']['parameters']['toml_setting'].format(user_agree, user_disagree)))
i = 0
if toml_setting.upper() == 'O':
while True:
try:
frame_sampling = float(input(locale_toml['ui']['parameters']['frame_samp'].format(min_frame_samp,
max_frame_samp)))
i += 1
toml_file_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['toml_file']))).strip()
if max_frame_samp >= frame_sampling >= min_frame_samp:
if os.path.exists(toml_file_path):
with codecs.open(toml_file_path, mode='r', encoding='utf-8') as f:
setting_toml = loads(f.read())
f.close()
break
else:
print(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp))
raise FileNotFoundError
except (FileNotFoundError, ValueError):
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
# <--coding in progress-->
raise NotImplementedError
# Paths
else:
print('\n{}'.format(locale_toml['ui']['info']['paths_title']))
# Video file
while True:
try:
video_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['video_file']))).strip()
if os.path.exists(video_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
# Video metadatas extraction
video = cv2.VideoCapture(video_path)
video_fps = video.get(cv2.CAP_PROP_FPS)
video_width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
video_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
video_total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
# GPS track file
while True:
try:
gps_track_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['gps_track']))).strip()
if os.path.exists(gps_track_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
# Output folder
output_folder = unix_path(input(locale_toml['ui']['paths']['output_folder']))
# Parameters
print('\n{}'.format(locale_toml['ui']['info']['parameters_title']))
# Timelapse video
timelapse = input(locale_toml['ui']['parameters']['timelapse'].format(user_agree, user_disagree)).upper()
if timelapse == user_agree:
# Timelapse framerate parameter
while True:
try:
timelapse_fps = int(input(locale_toml['ui']['parameters']['timelapse_fps'].format(min_timelapse_fps,
max_timelapse_fps)))
if max_timelapse_fps >= timelapse_fps >= min_timelapse_fps:
frame_sampling = float(1 / timelapse_fps)
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps,
max_timelapse_fps)))
True
except ValueError:
print('\n{}'.format(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps, max_timelapse_fps)))
True
else:
# Frame sampling parameter
while True:
try:
frame_sampling = float(input(locale_toml['ui']['parameters']['frame_samp'].format(min_frame_samp,
max_frame_samp)))
if max_frame_samp >= frame_sampling >= min_frame_samp:
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp)))
True
except ValueError:
print('\n{}'.format(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp)))
True
# Frame height parameter
if video_height <= max_frame_height:
max_frame_height = int(round(video_height, 0))
while True:
try:
frame_height = int(input(locale_toml['ui']['parameters']['frame_height'].format(min_frame_height,
max_frame_height)))
if max_frame_height >= frame_height >= min_frame_height:
break
elif frame_height == 0:
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height)))
True
except ValueError:
print(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp))
print('\n{}'.format(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height)))
True
## Frame height parameter
if video_height <= max_frame_height:
max_frame_height = int(round(video_height, 0))
while True:
try:
frame_height = int(input(locale_toml['ui']['parameters']['frame_height'].format(min_frame_height,
max_frame_height)))
if max_frame_height >= frame_height >= min_frame_height:
# Video start datetime parameter
while True:
try:
video_start_datetime = input(locale_toml['ui']['parameters']['video_start_datetime'])
video_start_datetime_obj = datetime.strptime(video_start_datetime, '%Y-%m-%dT%H:%M:%S.%f')
break
elif frame_height == 0:
break
else:
print(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height))
except ValueError:
print('\n{}'.format(locale_toml['ui']['parameters']['video_start_datetime_err']))
True
except ValueError:
print(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height))
True
### Video start datetime parameter
while True:
try:
video_start_datetime = input(locale_toml['ui']['parameters']['video_start_datetime'])
video_start_datetime_obj = datetime.strptime(video_start_datetime, '%Y-%m-%dT%H:%M:%S.%f')
break
except ValueError:
print(locale_toml['ui']['parameters']['video_start_datetime_err'])
True
# Video recording timezone
video_rec_timezone = input(locale_toml['ui']['parameters']['rec_timezone'])
### Video recording timezone
video_rec_timezone = input(locale_toml['ui']['parameters']['rec_timezone'])
# Time offset parameter
while True:
try:
time_offset = float(input(locale_toml['ui']['parameters']['time_offset'].format(min_time_offset,
max_time_offset)))
### Time offset parameter
while True:
try:
time_offset = float(input(locale_toml['ui']['parameters']['time_offset'].format(min_time_offset,
max_time_offset)))
if max_time_offset >= frame_sampling >= min_time_offset:
break
else:
print(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset))
if max_time_offset >= frame_sampling >= min_time_offset:
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset)))
True
except ValueError:
print('\n{}'.format(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset)))
True
except ValueError:
print(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset))
True
## User-defined metadata
print('\n{}'.format(locale_toml['ui']['info']['tags_title']))
# User-defined metadata
print('\n{}'.format(locale_toml['ui']['info']['tags_title']))
make = input(locale_toml['ui']['metadatas']['make'])
model = input(locale_toml['ui']['metadatas']['model'])
author = input(locale_toml['ui']['metadatas']['author'])
make = input(locale_toml['ui']['metadatas']['make'])
model = input(locale_toml['ui']['metadatas']['model'])
author = input(locale_toml['ui']['metadatas']['author'])
# Video metadatas formatting
print('\n{}'.format(locale_toml['processing']['reading_metadatas']))
# Video metadatas formatting
print('\n{}'.format(locale_toml['processing']['reading_metadatas']))
video_file_name = os.path.basename(video_path)
video_file_size = byte_multiple(os.stat(video_path).st_size)
video_duration = video_total_frames / video_fps
video_file_name = os.path.basename(video_path)
video_file_size = byte_multiple(os.stat(video_path).st_size)
video_duration = video_total_frames / video_fps
video_start_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_offset)
video_start_datetime = video_start_datetime_obj.strftime('%Y-%m-%d %H:%M:%S')
video_start_subsectime = int(video_start_datetime_obj.strftime('%f') / 1000)
video_start_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_offset)
video_start_datetime = video_start_datetime_obj.strftime('%Y-%m-%d %H:%M:%S')
video_start_subsectime = int(int(video_start_datetime_obj.strftime('%f')) / 1000)
# Metadata recap
print('\n{}'.format(locale_toml['ui']['info']['metadatas'].format(video_file_name,
round(video_file_size[0], 3), video_file_size[1],
video_duration, video_start_datetime,
'{:03d}'.format(video_start_subsectime),
video_rec_timezone)))
# Metadatas recap
print('\n{}'.format(locale_toml['ui']['info']['metadatas'].format(video_file_name,
round(video_file_size[0], 3), video_file_size[1],
video_duration, video_start_datetime,
'{:03d}'.format(video_start_subsectime),
video_rec_timezone)))
# Output folder creation
output_folder = '{}/{}'.format(output_folder, video_file_name)
existing_path(output_folder)
# Output folder creation
output_folder = '{}/{}'.format(output_folder, video_file_name)
existing_path(output_folder)
# Processes
## Frame sampling + tagging (OpenCV + piexif)
print('\n{}'.format(locale_toml['processing']['sampling']))
# Processes
# Frame sampling + tagging (OpenCV + piexif)
print('\n{}'.format(locale_toml['processing']['sampling']))
i = 0
i = 0
if timelapse == user_agree:
frame_interval = frame_sampling / video_fps
else:
frame_interval = frame_sampling
if timelapse == user_agree:
frame_interval = frame_sampling / video_fps
else:
frame_interval = frame_sampling
cv2_tqdm_unit = locale_toml['ui']['units']['cv2_tqdm']
cv2_tqdm_range = int(video_duration / frame_interval)
cv2_tqdm_unit = locale_toml['ui']['units']['cv2_tqdm']
cv2_tqdm_range = int(video_duration / frame_interval)
for i in tqdm(range(cv2_tqdm_range), unit=cv2_tqdm_unit):
t = frame_interval * i * 1000
video.set(cv2.CAP_PROP_POS_MSEC, t)
ret, frame = video.read()
for i in tqdm(range(cv2_tqdm_range), unit=cv2_tqdm_unit):
t = frame_interval * i * 1000
video.set(cv2.CAP_PROP_POS_MSEC, t)
ret, frame = video.read()
### Image resizing
if frame_height != 0:
resize_factor = video_height / frame_height
image_height = frame_height
image_width = int(round(video_height * resize_factor), 0)
# Image resizing
if frame_height != 0:
resize_factor = video_height / frame_height
image_height = frame_height
image_width = int(round(video_height * resize_factor, 0))
frame = cv2.resize(frame, (image_width, image_height), interpolation=cv2.INTER_LANCZOS4)
frame = cv2.resize(frame, (image_width, image_height), interpolation=cv2.INTER_LANCZOS4)
frame_name = '{:05d}'.format(i)
image_name = "{}_f{}.jpg".format(video_file_name.split('.')[0], frame_name)
image_path = "{}/{}".format(output_folder, image_name)
frame_name = '{:05d}'.format(i)
image_name = "{}_f{}.jpg".format(video_file_name.split('.')[0], frame_name)
image_path = "{}/{}".format(output_folder, image_name)
cv2.imwrite(image_path, frame, [cv2.IMWRITE_JPEG_QUALITY, 88, cv2.IMWRITE_JPEG_PROGRESSIVE, 1, cv2.IMWRITE_JPEG_SAMPLING_FACTOR, 0x411111])
cv2.imwrite(image_path, frame, [cv2.IMWRITE_JPEG_QUALITY, 88, cv2.IMWRITE_JPEG_PROGRESSIVE, 1, cv2.IMWRITE_JPEG_SAMPLING_FACTOR, 0x411111])
## Time tags formatting
time_shift = i * frame_sampling
current_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_shift)
current_datetime = current_datetime_obj.strftime('%Y:%m:%d %H:%M:%S')
current_subsec_time = int(int(current_datetime_obj.strftime('%f')) / 1000)
# Time tags formatting
time_shift = i * frame_sampling
current_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_shift)
current_datetime = current_datetime_obj.strftime('%Y:%m:%d %H:%M:%S')
current_subsec_time = int(int(current_datetime_obj.strftime('%f')) / 1000)
# exif code
# with open(image_path, 'rb') as image_file:
# image = Image(image_file)
# image.make = make
# image.model = model
# image.author = author
# image.copyright = "{}, {}".format(author, video_start_datetime_obj.strftime('%Y'))
# image.datetime_original = current_datetime
# #image.offset_time_original = video_rec_timezone
#
# if current_subsec_time > 0:
# image.subsec_time_original = str(current_subsec_time)
#
# with open(image_path, 'wb') as tagged_image_file:
# tagged_image_file.write(image.get_file())
# piexif code
image_exif = piexif.load(image_path)
# piexif code
image_exif = piexif.load(image_path)
image_tags = {
piexif.ImageIFD.Make: make,
piexif.ImageIFD.Model: model,
piexif.ImageIFD.Artist: author,
piexif.ImageIFD.Copyright: "{}, {}".format(author, video_start_datetime_obj.strftime('%Y')),
piexif.ImageIFD.Software: 'video2geoframes.py (v{})'.format(__version__)
}
image_tags = {
piexif.ImageIFD.Make: make,
piexif.ImageIFD.Model: model,
piexif.ImageIFD.Artist: author,
piexif.ImageIFD.Copyright: "{}, {}".format(author, video_start_datetime_obj.strftime('%Y')),
piexif.ImageIFD.Software: 'video2geoframes.py (v{})'.format(__version__)
}
exif_tags = {
piexif.ExifIFD.DateTimeOriginal: current_datetime,
piexif.ExifIFD.OffsetTimeOriginal: video_rec_timezone
}
exif_tags = {
piexif.ExifIFD.DateTimeOriginal: current_datetime,
piexif.ExifIFD.OffsetTimeOriginal: video_rec_timezone
}
if current_subsec_time > 0:
exif_tags[piexif.ExifIFD.SubSecTime] = str(current_subsec_time)
if current_subsec_time > 0:
exif_tags[piexif.ExifIFD.SubSecTime] = str(current_subsec_time)
image_exif['0th'] = image_tags
image_exif['Exif'] = exif_tags
image_exif['0th'] = image_tags
image_exif['Exif'] = exif_tags
image_exif_bytes = piexif.dump(image_exif)
piexif.insert(image_exif_bytes, image_path)
image_exif_bytes = piexif.dump(image_exif)
piexif.insert(image_exif_bytes, image_path)
i += 1
i += 1
# Geo-tagging (ExifTool)
print('\n{}'.format(locale_toml['processing']['geotagging']))
# Geo-tagging (ExifTool)
print('\n{}'.format(locale_toml['processing']['geotagging']))
geotagging_cmd = '{} -P -geotag "{}" "-geotime<SubSecDateTimeOriginal" -overwrite_original "{}/{}_f*.jpg"'\
.format(exiftool_path, gps_track_path, output_folder, video_file_name.split('.')[0])
geotagging = os.system(geotagging_cmd)
geotagging_cmd = '{} -P -geotag "{}" "-geotime<SubSecDateTimeOriginal" -overwrite_original "{}/{}_f*.jpg"'\
.format(exiftool_path, gps_track_path, output_folder, video_file_name.split('.')[0])
geotagging = os.system(geotagging_cmd)
# End
input('\n{}'.format(locale_toml['ui']['info']['end']))
except NotImplementedError:
print("\nSorry, this function is not implemented, work in progress ;)")
except InterruptedError:
input("\nEnd of program, press Enter to quit.")
# End
input('\n{}'.format(locale_toml['ui']['info']['end']))

19
video2geoframes_conf.toml Normal file
View File

@@ -0,0 +1,19 @@
# Default configuration file for video2geoframes.py
# See documentation for more information
#
# Last edition : 2024-06-23
# Mandatory section
[system]
# See documentation for supported locales
locale = "en_us"
exiftool_path = "./dependencies/exiftool.exe"
[default]
# Optional section to avoid manual input
# Tags can be overwrited if presents in TOML setting file
[default.tags]
author = "Campanu"
make = "Camera maker"
camera = "Camera model"