10 Commits

8 changed files with 551 additions and 276 deletions

View File

@@ -1,5 +1,96 @@
# video2geoframes.py # video2geoframes.py
Python script to generate a collection of geotagged images from a video and a GPS track. ![Gitea Release](https://img.shields.io/gitea/v/release/lumathieu/video2geoframes.py?gitea_url=https%3A%2F%2Fgit.luc-geo.fr&include_prereleases&sort=semver&display_name=release&style=flat&link=https%3A%2F%2Fgit.luc-geo.fr%2Flumathieu%2Fvideo2geoframes.py%2Freleases)
Designed for contribution to street-level imagery projects like Mapillary or Panoramax. _🇬🇧 version_
Python program to generate a collection of geotagged images from a video and a GPS track.
Designed for ease contribution to street-level imagery projects like Mapillary or Panoramax.
## Quick start
Nothing simpler : collect your video, your GPS track, execute Python script and follow the guide !
In detail, the program is built around a TUI or _Textual User Interface_, permitting to launch video process easily with
step-by-step parameters input.
Input is guided by textual help indicating attempted values.
Before script starting, you need to have :
* a video file with exact timestamp (start) in local time or UTC
* a clean GPS tack file covering video duration
* a working directory.
## Documentation
_Coming soon._
## Features
_Coming soon._
### Comparison v1 / v2
| Features | v1-beta | v2-alpha9 |
|-----------------------------|------------|------------|
| Timelapse video support | ✔️ | ✔️ |
| EXIF tags writing | ✔️ | ✔️ |
| Extended tags support | ✔️ | ❌ |
| Milliseconds support | ✔️ | ✔️ |
| Progress displaying | 🟡 raw | ✔️ |
| Multilingual TUI 🇺🇳 | 🟡 limited | ✔️ |
| Configuration customization | ❌ | 🟡 partial |
| JPEG qualtiy customization | ❌ | 🔄 planned |
| TOML setting | ❌ | 🔄 planned |
## Languages
TUI is multilingual thanks to "locales" base in the form of TOML files (`locales/*.toml`) easily extensible.
| Languages | Locale | Support | Maintainer |
|--------------|---------|------------|--------------|
| 🇺🇸 English | `en_us` | ✔️ 100 % | @lumathieu |
| 🇫🇷 French | `fr_fr` | ✔️ 100 % | @lumathieu |
| 🇮🇹 Italian | `it_it` | 🔄 planned | @lumathieu ? |
## Versions
See [_Releases_](https://git.luc-geo.fr/lumathieu/video2geoframes.py/releases).
## Setup
To set up program, be enough to clone Git repository, set up software dependencies and build Python environnement.
Recommended to use a virtual environnement (venv).
### Python
Entire project is developed and tested on **Python 3.11** (Windows x86-64).
### Dépendances
Core script uses following Python libraries (see also `requirements.txt`) :
- `numpy`
- `opencv-python`
- `piexif`
- `tomlkit`
- `tqdm`.
## Compatibility
Code is designed to be platform-independent.
Official supported platforms are Windows and Linux (partially tested under Debian / Ubuntu).
## Contribution
_Coming soon._
If you are interested to project contribution, you can send a mail to campanu@luc-geo.fr.
## License
This repository, except dependencies, is licensed under **GNU AGPL v3**.
Dependencies are included in repository for development and keep their original license
(see `dependencies/EXTRA_LICENSES.md`).

113
README_fr.md Normal file
View File

@@ -0,0 +1,113 @@
# video2geoframes.py
![Gitea Release](https://img.shields.io/gitea/v/release/lumathieu/video2geoframes.py?gitea_url=https%3A%2F%2Fgit.luc-geo.fr&include_prereleases&sort=semver&display_name=release&style=flat&link=https%3A%2F%2Fgit.luc-geo.fr%2Flumathieu%2Fvideo2geoframes.py%2Freleases)
_version 🇫🇷_
Programme Python permettant de générer un ensemble d'images géotaguées depuis une vidéo et une trace GPS.
Conçu pour faciliter la contribution à des projets de photo-cartographie de rue tels que Mapillary ou Panoramax.
## Démarrage rapide
Rien de plus simple : rassemblez votre vidéo, votre trace GPS, lancez le script Python et suivez le guide !
En détail, le programme est entièrement construit autour d'une TUI ou _Textual User Interface_, qui permet de lancer
facilement le traitement de la vidéo par la saisie pas-à-pas des paramètres.
La saisie est guidée par une aide textuelle indiquant les valeurs attendues.
Avant de lancer le script, vous avez besoin d'avoir :
* un fichier vidéo avec son horodatage exact (début) en temps local ou UTC
* un fichier de trace GPS propre couvrant la durée de la vidéo
* un dossier de travail.
## Documentation
_A venir._
## Fonctionnalités
Le programme permet d'exécuter en un seul traitement les tâches suivantes :
* le séquençage de la vidéo selon un intervalle de temps
* l'horodatage incrémental de la séquence d'image
* l'export des images au format JPEG
* le géotaguage des images exportées à partir de la trace GPS.
Il inclut également :
* le support des vidéos timelapse
* le redimensionnement des images à une résolution inférieure à la vidéo d'origine tout en conservant le ratio
* l'ajout de métadonnées avec les tags EXIF `artist`, `make`, `model` et `copyright` (cf. [documentation ExifTool](https://exiftool.org/TagNames/EXIF.html))
* l'horodatage à la précision de la milliseconde
* le support du temps local décalé par rapport à UTC.
* l'ajout d'un décalage temporel pour mieux corréler la vidéo et la trace GPS.
Lors de l'export, un sous-dossier nommé selon la vidéo est créé automatiquement dans le répertoire de sortie.
### Comparaison v1 / v2
| Fonctionnalité | v1-beta | v2-alpha9 |
|--------------------------------------|------------|--------------|
| Support des vidéos timelapse | ✔️ | ✔️ |
| Écriture des tags EXIF | ✔️ | ✔️ |
| Support des tags étendus | ✔️ | ❌ |
| Support des millisecondes | ✔️ | ✔️ |
| Affichage de la progression | 🟡 brut | ✔️ |
| TUI multilingue 🇺🇳 | 🟡 limitée | ✔️ |
| Personnalisation de la configuration | ❌ | 🟡 partielle |
| Personnalisation qualité JPEG | ❌ | 🔄 planifié |
| Paramétrage via TOML | ❌ | 🔄 planifié |
## Langues
La TUI est multilingue grâce une base de "locales" sous forme de fichiers TOML (`locales/*.toml`) facilement extensible.
| Langue | Locale | Support | Mainteneur |
|---------------|---------|-------------|--------------|
| 🇺🇸 Anglais | `en_us` | ✔️ 100 % | @lumathieu |
| 🇫🇷 Français | `fr_fr` | ✔️ 100 % | @lumathieu |
| 🇮🇹 Italien | `it_it` | 🔄 planifié | @lumathieu ? |
## Versions
Voir [_Releases_](https://git.luc-geo.fr/lumathieu/video2geoframes.py/releases).
## Installation
Pour installer le programme, il suffit de cloner le dépôt Git, d'installer les dépendances logicielles et de construire
l'environnement Python. Il est recommandé d'utiliser un environnement virtuel (venv).
### Python
L'ensemble du projet est développé et testé avec **Python 3.11** (Windows x86-64).
### Dépendances
Le script principal utilise les librairies Python suivantes (voir aussi `requirements.txt`) :
- `numpy`
- `opencv-python`
- `piexif`
- `tomlkit`
- `tqdm`.
Il utilise également le programme [`ExifTool`](https://exiftool.org/) pour le géotaguage des images.
Appelée par une commande système, cette dépendance est prévue pour être supprimée dans les versions futures.
## Compatibilité
Le code est conçu pour être indépendant de la plateforme.
Les plateformes officiellement supportées sont Windows et Linux (partiellement testé sous Debian / Ubuntu).
## Contribution
_A venir._
Si vous intéressé pour contribuer au projet, vous pouvez envoyer un mail à campanu@luc-geo.fr.
## Licence
Ce dépôt, à l'exception des dépendances, est sous licence **GNU AGPL v3**.
Les dépendances sont incluses au dépôt pour le développement et restent sous leur licence d'origine
(voir `dependencies/EXTRA_LICENSES.md`).

8
dependencies/EXTRA_LICENSES.md vendored Normal file
View File

@@ -0,0 +1,8 @@
# Extra licenses
Detail of dependencies original license.
## ExifTool (by Phil Harvey)
> This is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
> http://dev.perl.org/licenses/

View File

@@ -1,4 +1,4 @@
# Localization file for video2geoframes.py script # Localization file for video2geoframes.py
# English (US / World) # English (US / World)
# #
# Last edition : 2024-06-23 # Last edition : 2024-06-23

View File

@@ -1,4 +1,4 @@
# Localization file for video2geoframes.py script # Localization file for video2geoframes.py
# French (France) # French (France)
# #
# Last edition : 2024-06-23 # Last edition : 2024-06-23

6
requirements.txt Normal file
View File

@@ -0,0 +1,6 @@
colorama==0.4.6
numpy==2.0.0
opencv-python==4.10.0.84
piexif==1.1.3
tomlkit==0.12.5
tqdm==4.66.4

View File

@@ -2,13 +2,13 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
"""video2geoframes.py """video2geoframes.py
Python script to generate a collection of geotagged images from a video and a GPS track. Python program to generate a collection of geotagged images from a video and a GPS track.
Designed for contribution to street-level imagery projects like Mapillary or Panoramax. Designed for contribution to street-level imagery projects like Mapillary or Panoramax.
""" """
__author__ = "Lucas MATHIEU (@campanu)" __author__ = "Lucas MATHIEU (@campanu)"
__license__ = "AGPL-3.0-or-later" __license__ = "AGPL-3.0-or-later"
__version__ = "2.0-alpha6" __version__ = "2.0-alpha9"
__maintainer__ = "Lucas MATHIEU (@campanu)" __maintainer__ = "Lucas MATHIEU (@campanu)"
__email__ = "campanu@luc-geo.fr" __email__ = "campanu@luc-geo.fr"
@@ -19,9 +19,9 @@ from datetime import datetime, timedelta
import cv2 import cv2
import piexif import piexif
from tomlkit import dumps, loads from tomlkit import loads
from tqdm import tqdm from tqdm import tqdm
from exif import Image, GpsAltitudeRef
# Functions # Functions
def unix_path(path): def unix_path(path):
@@ -45,19 +45,56 @@ def byte_multiple(size):
size = size / 1024 size = size / 1024
multiple = multiples[i] multiple = multiples[i]
return size, multiple return size, multiple
def existing_items(expected_items: list, items: list):
presents_items = []
duplicated_items = []
missing_items = []
for eit in expected_items:
i = 0
for it in items:
if it == eit:
i += 1
if i == 0:
missing_items.append(eit)
elif i == 1:
presents_items.append(eit)
else:
duplicated_items.append(eit)
return {'presents': presents_items, 'duplicated': duplicated_items, 'missing': missing_items}
def list_enumerator(item_list: list, intermediate_separator: str, last_separator: str):
i = 1
for it in item_list:
if i == 1:
enumerated_list = it
elif 1 < i < len(item_list):
enumerated_list = '{}{}{}'.format(enumerated_list, intermediate_separator, it)
else:
enumerated_list = '{}{}{}'.format(enumerated_list, last_separator, it)
i += 1
return enumerated_list
# Start # Start
print('# video2geoframes.py') print("# video2geoframes.py (v{})\n".format(__version__))
# Configuration settings # Configuration settings
base_path = unix_path(os.path.dirname(__file__)) base_path = unix_path(os.path.dirname(__file__))
ini_file_path = '{}/video2geoframes.ini'.format(base_path) conf_file_path = '{}/video2geoframes_conf.toml'.format(base_path)
ini_file_err = False conf_file_err = False
## Default values # Default values
mandatory_parameters = ['locale', 'exiftool_path']
locale = 'en_us' locale = 'en_us'
min_frame_samp = 0.5 min_frame_samp = 0.5
max_frame_samp = 60.0 max_frame_samp = 60.0
@@ -68,322 +105,323 @@ max_frame_height = 9000
min_time_offset = -10.0 min_time_offset = -10.0
max_time_offset = 10.0 max_time_offset = 10.0
## Platform-dependent commands # Platform-dependent default paths
if platform.system() == 'Windows': if platform.system() == 'Windows':
ffmpeg_path = '{}/dependencies/ffmpeg-essentials/bin/ffmpeg.exe'.format(base_path)
exiftool_path = '{}/dependencies/exiftool.exe'.format(base_path) exiftool_path = '{}/dependencies/exiftool.exe'.format(base_path)
else: else:
ffmpeg_path = 'ffmpeg'
exiftool_path = 'exiftool' exiftool_path = 'exiftool'
## ini file reading try:
if os.path.exists(ini_file_path): # Configuration file reading
configuration = {}
try: try:
with open(ini_file_path, 'r') as file: if os.path.exists(conf_file_path):
for line in file: with codecs.open(conf_file_path, mode='r', encoding='utf-8') as f:
if line[0] == '#': conf_toml = loads(f.read())
continue f.close()
else: else:
(key, value) = line.split() raise FileNotFoundError
configuration[key] = value.replace('"', '')
locale = configuration.get('ui_language') # Configuration check
max_frame_samp = float(configuration.get('max_frame_sample')) reading_parameters = conf_toml['system'].keys()
ffmpeg_path = configuration.get('ffmpeg_path').replace('./', '{}/'.format(base_path)) check_result = existing_items(mandatory_parameters, reading_parameters)
exiftool_path = configuration.get('exiftool_path').replace('./', '{}/'.format(base_path))
except:
print('\nError... not readable or incomplete ini file. Default configuration will be used.')
# Localization if len(check_result['missing']) != 0:
locale_file_path = '{}/locales/{}.toml'.format(base_path, locale) missing_parameters_list = list_enumerator(check_result['missing'], ', ', ' and ')
if os.path.exists(locale_file_path): if len(missing_parameters_list) > 1:
verb = 'is'
else:
verb = 'are'
print("(!) {} {} missing in configuration file.".format(missing_parameters_list, verb))
raise ValueError
# Configuration assignment
locale = conf_toml['system']['locale']
exiftool_path = unix_path(conf_toml['system']['exiftool_path']).replace('./', '{}/'.format(base_path))
except (FileNotFoundError, ValueError):
print("\nError... configuration file doesn't exists or invalid.")
default_conf = str(input("Use default configuration instead (Y/N) ? ").upper())
if default_conf != 'Y':
raise InterruptedError
# Localization
locale_file_path = '{}/locales/{}.toml'.format(base_path, locale)
if os.path.exists(locale_file_path):
with codecs.open(locale_file_path, mode='r', encoding='utf-8') as f: with codecs.open(locale_file_path, mode='r', encoding='utf-8') as f:
locale_toml = loads(f.read()) locale_toml = loads(f.read())
f.close() f.close()
else:
print("Error.... file for locale \"{}\" doesn't exists or invalid.".format(locale))
ValueError
user_agree = locale_toml['user']['agree'][0].upper()
user_disagree = locale_toml['user']['disagree'][0].upper()
path_error = locale_toml['ui']['paths']['path_err']
# Introduction text
print(locale_toml['ui']['info']['intro'])
# User input
## TOML setting file
toml_setting = input('\n{}'.format(locale_toml['ui']['parameters']['toml_setting'].format(user_agree, user_disagree)))
i = 0
if toml_setting.upper() == 'O':
while True:
try:
i += 1
toml_file_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['toml_file']))).strip()
if os.path.exists(toml_file_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
with codecs.open(toml_file_path, mode='r', encoding='utf-8') as f:
setting_toml = loads(f.read())
f.close()
# <--coding in progress-->
video_path = ''
gps_track_path = ''
## Paths
else:
print('\n{}'.format(locale_toml['ui']['info']['paths_title']))
### Video file
while True:
try:
video_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['video_file']))).strip()
if os.path.exists(video_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
### Video metadatas extraction
video = cv2.VideoCapture(video_path)
video_fps = video.get(cv2.CAP_PROP_FPS)
video_width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
video_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
video_total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
### GPS track file
while True:
try:
gps_track_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['gps_track']))).strip()
if os.path.exists(gps_track_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
### Output folder
output_folder = unix_path(input(locale_toml['ui']['paths']['output_folder']))
## Parameters
print('\n{}'.format(locale_toml['ui']['info']['parameters_title']))
### Timelapse video
timelapse = input(locale_toml['ui']['parameters']['timelapse'].format(user_agree, user_disagree))
if timelapse.upper() == user_agree:
### Timelapse framerate parameter
while True:
try:
timelapse_fps = int(input(locale_toml['ui']['parameters']['timelapse_fps'].format(min_timelapse_fps,
max_timelapse_fps)))
if max_timelapse_fps >= timelapse_fps >= min_timelapse_fps:
frame_sampling = 1 / timelapse_fps
break
else:
print(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps,
max_timelapse_fps))
True
except ValueError:
print(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps, max_timelapse_fps))
True
else: else:
### Frame sampling parameter print("\nError.... file for locale \"{}\" doesn't exists or invalid.".format(locale))
raise InterruptedError
user_agree = locale_toml['user']['agree'][0].upper()
user_disagree = locale_toml['user']['disagree'][0].upper()
path_error = locale_toml['ui']['paths']['path_err']
# Introduction text
print(locale_toml['ui']['info']['intro'])
# User input
# TOML setting file
toml_setting = input('\n{}'.format(locale_toml['ui']['parameters']['toml_setting'].format(user_agree, user_disagree)))
i = 0
if toml_setting.upper() == 'O':
while True: while True:
try: try:
frame_sampling = float(input(locale_toml['ui']['parameters']['frame_samp'].format(min_frame_samp, i += 1
max_frame_samp))) toml_file_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['toml_file']))).strip()
if max_frame_samp >= frame_sampling >= min_frame_samp: if os.path.exists(toml_file_path):
with codecs.open(toml_file_path, mode='r', encoding='utf-8') as f:
setting_toml = loads(f.read())
f.close()
break break
else: else:
print(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp)) raise FileNotFoundError
except (FileNotFoundError, ValueError):
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
# <--coding in progress-->
raise NotImplementedError
# Paths
else:
print('\n{}'.format(locale_toml['ui']['info']['paths_title']))
# Video file
while True:
try:
video_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['video_file']))).strip()
if os.path.exists(video_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
# Video metadatas extraction
video = cv2.VideoCapture(video_path)
video_fps = video.get(cv2.CAP_PROP_FPS)
video_width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
video_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
video_total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
# GPS track file
while True:
try:
gps_track_path = unix_path(input('{}'.format(locale_toml['ui']['paths']['gps_track']))).strip()
if os.path.exists(gps_track_path):
break
else:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
except:
print('{}\n'.format(locale_toml['ui']['paths']['path_err']))
True
# Output folder
output_folder = unix_path(input(locale_toml['ui']['paths']['output_folder']))
# Parameters
print('\n{}'.format(locale_toml['ui']['info']['parameters_title']))
# Timelapse video
timelapse = input(locale_toml['ui']['parameters']['timelapse'].format(user_agree, user_disagree)).upper()
if timelapse == user_agree:
# Timelapse framerate parameter
while True:
try:
timelapse_fps = int(input(locale_toml['ui']['parameters']['timelapse_fps'].format(min_timelapse_fps,
max_timelapse_fps)))
if max_timelapse_fps >= timelapse_fps >= min_timelapse_fps:
frame_sampling = float(1 / timelapse_fps)
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps,
max_timelapse_fps)))
True
except ValueError:
print('\n{}'.format(locale_toml['ui']['parameters']['timelapse_fps_err'].format(min_timelapse_fps, max_timelapse_fps)))
True
else:
# Frame sampling parameter
while True:
try:
frame_sampling = float(input(locale_toml['ui']['parameters']['frame_samp'].format(min_frame_samp,
max_frame_samp)))
if max_frame_samp >= frame_sampling >= min_frame_samp:
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp)))
True
except ValueError:
print('\n{}'.format(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp)))
True
# Frame height parameter
if video_height <= max_frame_height:
max_frame_height = int(round(video_height, 0))
while True:
try:
frame_height = int(input(locale_toml['ui']['parameters']['frame_height'].format(min_frame_height,
max_frame_height)))
if max_frame_height >= frame_height >= min_frame_height:
break
elif frame_height == 0:
break
else:
print('\n{}'.format(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height)))
True True
except ValueError: except ValueError:
print(locale_toml['ui']['parameters']['frame_samp_err'].format(min_frame_samp, max_frame_samp)) print('\n{}'.format(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height)))
True True
## Frame height parameter # Video start datetime parameter
if video_height <= max_frame_height: while True:
max_frame_height = int(round(video_height, 0)) try:
video_start_datetime = input(locale_toml['ui']['parameters']['video_start_datetime'])
while True: video_start_datetime_obj = datetime.strptime(video_start_datetime, '%Y-%m-%dT%H:%M:%S.%f')
try:
frame_height = int(input(locale_toml['ui']['parameters']['frame_height'].format(min_frame_height,
max_frame_height)))
if max_frame_height >= frame_height >= min_frame_height:
break break
elif frame_height == 0: except ValueError:
break print('\n{}'.format(locale_toml['ui']['parameters']['video_start_datetime_err']))
else:
print(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height))
True True
except ValueError:
print(locale_toml['ui']['parameters']['frame_height_err'].format(min_frame_height, max_frame_height))
True
### Video start datetime parameter # Video recording timezone
while True: video_rec_timezone = input(locale_toml['ui']['parameters']['rec_timezone'])
try:
video_start_datetime = input(locale_toml['ui']['parameters']['video_start_datetime'])
video_start_datetime_obj = datetime.strptime(video_start_datetime, '%Y-%m-%dT%H:%M:%S.%f')
break
except ValueError:
print(locale_toml['ui']['parameters']['video_start_datetime_err'])
True
### Video recording timezone # Time offset parameter
video_rec_timezone = input(locale_toml['ui']['parameters']['rec_timezone']) while True:
try:
time_offset = float(input(locale_toml['ui']['parameters']['time_offset'].format(min_time_offset,
max_time_offset)))
### Time offset parameter if max_time_offset >= frame_sampling >= min_time_offset:
while True: break
try: else:
time_offset = float(input(locale_toml['ui']['parameters']['time_offset'].format(min_time_offset, max_time_offset))) print('\n{}'.format(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset)))
True
if max_time_offset >= frame_sampling >= min_time_offset: except ValueError:
break print('\n{}'.format(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset)))
else:
print(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset))
True True
except ValueError:
print(locale_toml['ui']['parameters']['time_offset_err'].format(min_time_offset, max_time_offset))
True
## User-defined metadata # User-defined metadata
print('\n{}'.format(locale_toml['ui']['info']['tags_title'])) print('\n{}'.format(locale_toml['ui']['info']['tags_title']))
make = input(locale_toml['ui']['metadatas']['make']) make = input(locale_toml['ui']['metadatas']['make'])
model = input(locale_toml['ui']['metadatas']['model']) model = input(locale_toml['ui']['metadatas']['model'])
author = input(locale_toml['ui']['metadatas']['author']) author = input(locale_toml['ui']['metadatas']['author'])
# Video metadatas formatting # Video metadatas formatting
print('\n{}'.format(locale_toml['processing']['reading_metadatas'])) print('\n{}'.format(locale_toml['processing']['reading_metadatas']))
video_file_name = os.path.basename(video_path) video_file_name = os.path.basename(video_path)
video_file_size = byte_multiple(os.stat(video_path).st_size) video_file_size = byte_multiple(os.stat(video_path).st_size)
video_duration = video_total_frames / video_fps video_duration = video_total_frames / video_fps
video_start_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_offset) video_start_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_offset)
video_start_datetime = video_start_datetime_obj.strftime('%Y-%m-%d %H:%M:%S') video_start_datetime = video_start_datetime_obj.strftime('%Y-%m-%d %H:%M:%S')
video_start_subsectime = video_start_datetime_obj.strftime('%f') video_start_subsectime = int(int(video_start_datetime_obj.strftime('%f')) / 1000)
# Metadata recap # Metadatas recap
print('\n{}'.format(locale_toml['ui']['info']['metadatas'].format(video_file_name, print('\n{}'.format(locale_toml['ui']['info']['metadatas'].format(video_file_name,
round(video_file_size[0], 3), video_file_size[1], round(video_file_size[0], 3), video_file_size[1],
video_duration, video_start_datetime, video_duration, video_start_datetime,
int(int(video_start_subsectime) / 1000), '{:03d}'.format(video_start_subsectime),
video_rec_timezone))) video_rec_timezone)))
# Output folder creation # Output folder creation
output_folder = '{}/{}'.format(output_folder, video_file_name) output_folder = '{}/{}'.format(output_folder, video_file_name)
existing_path(output_folder) existing_path(output_folder)
# Processes # Processes
## Frame sampling + tagging (OpenCV + piexif) # Frame sampling + tagging (OpenCV + piexif)
print('\n{}'.format(locale_toml['processing']['sampling'])) print('\n{}'.format(locale_toml['processing']['sampling']))
i = 0 i = 0
if timelapse == user_agree: if timelapse == user_agree:
frame_interval = frame_sampling / video_fps frame_interval = frame_sampling / video_fps
else: else:
frame_interval = frame_sampling frame_interval = frame_sampling
cv2_tqdm_unit = locale_toml['ui']['units']['cv2_tqdm'] cv2_tqdm_unit = locale_toml['ui']['units']['cv2_tqdm']
cv2_tqdm_range = int(video_duration / frame_interval) cv2_tqdm_range = int(video_duration / frame_interval)
for i in tqdm(range(cv2_tqdm_range), unit=cv2_tqdm_unit): for i in tqdm(range(cv2_tqdm_range), unit=cv2_tqdm_unit):
t = frame_interval * i * 1000 t = frame_interval * i * 1000
video.set(cv2.CAP_PROP_POS_MSEC, t) video.set(cv2.CAP_PROP_POS_MSEC, t)
ret, frame = video.read() ret, frame = video.read()
### Image resizing # Image resizing
if frame_height != 0: if frame_height != 0:
resize_factor = video_height / frame_height resize_factor = video_height / frame_height
image_height = frame_height image_height = frame_height
image_width = int(round(video_height * resize_factor), 0) image_width = int(round(video_height * resize_factor, 0))
frame = cv2.resize(frame, (image_width, image_height), interpolation=cv2.INTER_LANCZOS4) frame = cv2.resize(frame, (image_width, image_height), interpolation=cv2.INTER_LANCZOS4)
frame_name = '{:05d}'.format(i) frame_name = '{:05d}'.format(i)
image_name = "{}_f{}.jpg".format(video_file_name.split('.')[0], frame_name) image_name = "{}_f{}.jpg".format(video_file_name.split('.')[0], frame_name)
image_path = "{}/{}".format(output_folder, image_name) image_path = "{}/{}".format(output_folder, image_name)
cv2.imwrite(image_path, frame, [cv2.IMWRITE_JPEG_QUALITY, 88, cv2.IMWRITE_JPEG_PROGRESSIVE, 1, cv2.IMWRITE_JPEG_SAMPLING_FACTOR, 0x411111]) cv2.imwrite(image_path, frame, [cv2.IMWRITE_JPEG_QUALITY, 88, cv2.IMWRITE_JPEG_PROGRESSIVE, 1, cv2.IMWRITE_JPEG_SAMPLING_FACTOR, 0x411111])
## Time tags formatting # Time tags formatting
time_shift = i * frame_sampling time_shift = i * frame_sampling
current_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_shift) current_datetime_obj = video_start_datetime_obj + timedelta(seconds=time_shift)
current_datetime = current_datetime_obj.strftime('%Y:%m:%d %H:%M:%S') current_datetime = current_datetime_obj.strftime('%Y:%m:%d %H:%M:%S')
current_subsec_time = int(int(current_datetime_obj.strftime('%f')) / 1000) current_subsec_time = int(int(current_datetime_obj.strftime('%f')) / 1000)
# exif code # piexif code
# with open(image_path, 'rb') as image_file: image_exif = piexif.load(image_path)
# image = Image(image_file)
# image.make = make
# image.model = model
# image.author = author
# image.copyright = "{}, {}".format(author, video_start_datetime_obj.strftime('%Y'))
# image.datetime_original = current_datetime
# #image.offset_time_original = video_rec_timezone
#
# if current_subsec_time > 0:
# image.subsec_time_original = str(current_subsec_time)
#
# with open(image_path, 'wb') as tagged_image_file:
# tagged_image_file.write(image.get_file())
# piexif code image_tags = {
image_exif = piexif.load(image_path) piexif.ImageIFD.Make: make,
piexif.ImageIFD.Model: model,
piexif.ImageIFD.Artist: author,
piexif.ImageIFD.Copyright: "{}, {}".format(author, video_start_datetime_obj.strftime('%Y')),
piexif.ImageIFD.Software: 'video2geoframes.py (v{})'.format(__version__)
}
image_tags = { exif_tags = {
piexif.ImageIFD.Make: make, piexif.ExifIFD.DateTimeOriginal: current_datetime,
piexif.ImageIFD.Model: model, piexif.ExifIFD.OffsetTimeOriginal: video_rec_timezone
piexif.ImageIFD.Artist: author, }
piexif.ImageIFD.Copyright: "{}, {}".format(author, video_start_datetime_obj.strftime('%Y')),
piexif.ImageIFD.Software: 'video2geoframes.py (v{})'.format(__version__)
}
exif_tags = { if current_subsec_time > 0:
piexif.ExifIFD.DateTimeOriginal: current_datetime, exif_tags[piexif.ExifIFD.SubSecTime] = str(current_subsec_time)
piexif.ExifIFD.OffsetTimeOriginal: video_rec_timezone
}
if current_subsec_time > 0: image_exif['0th'] = image_tags
exif_tags[piexif.ExifIFD.SubSecTime] = str(current_subsec_time) image_exif['Exif'] = exif_tags
image_exif['0th'] = image_tags image_exif_bytes = piexif.dump(image_exif)
image_exif['Exif'] = exif_tags piexif.insert(image_exif_bytes, image_path)
image_exif_bytes = piexif.dump(image_exif) i += 1
piexif.insert(image_exif_bytes, image_path)
i += 1 # Geo-tagging (ExifTool)
print('\n{}'.format(locale_toml['processing']['geotagging']))
# Geo-tagging (ExifTool) geotagging_cmd = '{} -P -geotag "{}" "-geotime<SubSecDateTimeOriginal" -overwrite_original "{}/{}_f*.jpg"'\
print('\n{}'.format(locale_toml['processing']['geotagging'])) .format(exiftool_path, gps_track_path, output_folder, video_file_name.split('.')[0])
geotagging = os.system(geotagging_cmd)
geotagging_cmd = '{} -P -geotag "{}" "-geotime<SubSecDateTimeOriginal" -overwrite_original "{}/{}_f*.jpg"'\ # End
.format(exiftool_path, gps_track_path, output_folder, video_file_name.split('.')[0]) input('\n{}'.format(locale_toml['ui']['info']['end']))
geotagging = os.system(geotagging_cmd) except NotImplementedError:
print("\nSorry, this function is not implemented, work in progress ;)")
except InterruptedError:
input("\nEnd of program, press Enter to quit.")
# End
input('\n{}'.format(locale_toml['ui']['info']['end']))

19
video2geoframes_conf.toml Normal file
View File

@@ -0,0 +1,19 @@
# Default configuration file for video2geoframes.py
# See documentation for more information
#
# Last edition : 2024-06-23
# Mandatory section
[system]
# See documentation for supported locales
locale = "en_us"
exiftool_path = "./dependencies/exiftool.exe"
[default]
# Optional section to avoid manual input
# Tags can be overwrited if presents in TOML setting file
[default.tags]
author = "Campanu"
make = "Camera maker"
camera = "Camera model"